DORIAN VLADEANU

SIMULATION OF THE SIMPLE AND IRREDUCIBLE
PRODUCTION SYSTEMS

1. Introduction

The latest researches in the cybernetics of the industrial systems point
out certain relations between the quantities of Fig. 1, where:

X Y
— T(s) > } Z
S S
| R(s) =]
Fig. |

X = inputs vector (materials, energy, information, manpower, financial
resources etc.)

T(s) = transformation structure

I(s) = information system

R(s) = regulation — control system

The relation sequences that can be written according to diagram 1 are as
follows:

Y =T(s) [X + AX] (1)
AX = Y-R(s) 2)
Y =T(s)[X + YR(s)] (3
thus resulting;
LG T ()

“T-T(s)-R(s)
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or Y=G(s) X (5)
. __ T 6
where: G(s) = T ) RG) (6)

I = identity matrix.

2. Simulation of the irreducible systems

Considering the simulation systems as being in accordance with the
description of Edmond Nicolau, namely as iterative process, and
considering that the calculus elements mentioned in the relation (4) are
scalars, using only formulas (1) and (2), we can write:

Y(@)=T(s)[X(t—1)+AX(1)] M
AX(1)=R(s)Y (1= 1) (8)

where T(s) and R(s) are considered to be unchanged. Establishing the values
of T(s) at 0.75, of R(s) at 0.65, of X(1) at 0.9 and of AX(0) at 0, in
conformity with formulas (7) and (8), accordingly adapted, so that:

Y(O)=T(sX )+ AX (1 -1)] 9)
AX(1)=R(s)Y(t—1)

X(t+1)=X(t) + AX(DAX(t) =R(s)Y(t = 1) (10)
AX(0) =0

we will obtain, through simulation, the following conduct of the described
system:

Table 1.
Simulation of the system described by (10)
¢ X@) Yit) AX(t) X(t+1)
1 0,900 0,675 0.439 1,339
2 1,339 1,333 0,866 2,205
3 2,205 2,303 1,497 3,702
4 3,702 3,899 2,534 6,236
5 6,236 6,577 4,275 10,511
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A brief analysis of the data in the table above will immediately show
that the simulated process has an exponential development (according to
diagram 2) which, should there be no natural limits, could develop itself
infinitely.

QO = M & & o ;o
1

Fig. 2

These natural limits must result from the structure of the system itself,
so that, should we try to render the cybemetic system as in fig. 3, where
there appears the difference:

e=Z-Y (n
Y
T(s) g
=E B s
I I(s) e=2-Y {
i
LN T w——p) _ J
g By —
yA
Fig. 3

between the achievements Y and the objectives Z (difference seized aqd
determined by the I(s) information system); the functionals that describe, in
this case, the conduct of the newly considered system, are:

Y =T(s)[X +AX] (12)
AX = R(s)-€ (13)
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and which, described and ordered with regard to time, are as follows:
Y(O=T()NX(-N+AX(1)] (14)
AX () =R(HZ-Y(t-1)] (15)

For Z = 1 the simulation of the systems, according to the formulas above,
becomes:

Table 2.
Simulation of the system described by (14 - 15)
¢ X A Y(t) &) AX(e+1) | X(t+1)
1 0,900 | 0,675 0,325 0,211 1,111
2 L1 1 0,991 0,009 0,006 1,117
3 1,117 1 0,842 0,158 0,103 1,220
4 1,220 1 0,992 0,008 0,005 1,225
5 1,225 1 0,923 0.077 0,05 1,275

The evolution of the exit value will now have the trajectory described
in fig. 4.
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Fig. 5

Both the calculations and the diagram suggest an ergodic process,
with oscillations reduced (absorbed) due to the regulation process.

Taking into account the above basic methods, we can develop and
build other models, specific for the production systems.

As a natural consequence of the analysis, the next step is the study of
the 4 elements — system (according to fig. 6):

B e vy
Y

Z

o R

Fig. 6

The functionals that describe the evolution of the system above are
rendered through the following formulas:

Y = E(s)[x; +Ax) (16)
Yy =D(s)-Y (17
AZ = R(sNZ~Y;1=R(5)[Z-D(s)-Y] (18)
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Ax = A(s5)-AZ (19)
x;=A(s)-x (20)
where:
A(s) = resource supply substructure
E(s) = system effector
D(s) = system detector
R(s) = system regulator
The final formula is as follows:

Y = E(s)- A(D[x+R(s5)-Z] @1
I = E(5) A(s): R(s) - D(s)

The schematic development of the production systems’ representations
can continue, but, from the practical point of view, it is less recommended,
given the supplementary difficulties that can arise in the case of such
developments; given these reasons, the simulation of the conduct of the
production systems is realized on simpler models, that can be more useful
and suggestive.

Thus, should we compare the work place to an irreducible
production system, the latter could be graphically represented as below:

Y
M(s) o T

tam

AX R(s}) —
Rz(S

Fig.7

where:

X = number of inputs

M(s) = state — transformation matrix of the equipment (production capacity)
Y = number of exits

R,(s) = human factor associated to the technical — technological adjustment
Ra(s) = human factor associated to the supply processes’ regulation

AX = modification affecting the number of inputs
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AM = modifications of the machine’s state.

In order to simplify the calculations, we will consider all the specified
matrixes to be scalars, and therefore we will use the following notation
system, in univocal correspondence with the above-mentioned notations: x,
m, y, ry, rz, dy and d,.

Should we consider r as standing for the total reguiation capacity of
the human factor, then:

rz=r-r (22)
¥ = (m+dm) (x+dx) (23)
dm = rpy; de = yra = (r-r))y (24)

We also introduce two supplementary notations:
myg = transformation capacity of the machine (equipment)
up = entrances that are not depending on human factors
The formula is now:

m=mg+ kdm (23)

where k = dimensionless coefficient, designating a measure of the capacity
of the equipment of being influenced by the human factor; the formula (23)
becomes then:

y=m0-x+[m0(r—r])+k-r]-x]y-i-k-r](r—r])yz (26)
and if we note:

a=kryrry)
b = myfr-r;)+k-r;x-1 (27)
C = mpx

we will obtain:

f(y)=ay2+by+c=0 (28)
that will have a maximum for:

df (y) : b

T =0 resulting y S (29)

or:
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m(r—r1)+kr1x—] mry ~mr-kr1x+1
2kr-(r—ri) i 2kr1(r— r)

Yopt =~ (30)

It is obvious that, in order to obtain a value as high as possible for y, it
is imperative that a—0 or b<0, or, with another formula:

kri(r-r;) =0
mo(r-r;) + krix -1 <0 (31

We will have:

-a=0if r,—=0
-b<0 if =0

which means that the maximal value corresponds to the situation when the
worker’s exclusive attributions are to supply materials; the same results are
obtained if the worker will handle the machine exclusively, fact that points
out the advantages of the specialization and of the collaboration in the
production process.

Should we assume that the worker is handling both the machine
adjustment and the supplying issues (to put it another way, r =r13), then we
have:

m0+xk+x

Yopt r(k +1) &2
To put it another way, in comparison 1o the situation pointed out by the

formulas (31), only the a—0 requirement will be met, as the counter is

independent with regard to the adjustment, and, in the case of the second

situation, (r) = r;), we will always obtain, in

comparison to the first, the following formula:

Yopt <Yope (33)

Another fundamental value of the production process is the work
productivity. Regarding this matter, managerial practice pointed out the fact
that, as a larger number of identical products is executed, the execution
duration per object diminishes (according to diagram 8).
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Fig. 8

Considering:
ty, = minimal duration of execution
At = the reduction duration of the time of execution when increasing their
quantity
n = number of objects / products that are taken into account
t; = the execution duration of one (and only one) object.

Admitting that the system that executes more objects can be
schematically represented as in figure 9, mentioning that the “reaction” of
the regulator can be applied either to the entrances vector X, or to the state
matrix T(s).

T At e=ly-ty

R(s) ———

Fig. 9
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The reduction of the execution duration (and thus the increase of the
production per time unit) is obtained by improving the state matrix T(s), and
the objective of the system solicits the reduction, to minimal values, of the
execution data; also, admitting the hypothesis that the system adjustment
(controller) can set as an objective the reduction, as soon as possible, of the
execution duration per object (and consequently the & difference), it results
that the following formulas can be written:

th=Y, = Tys}X (34)

Tp(s)=T,_;(s)+At (35)

AT =R(s)-e=R(s)ty -1, _) (36)
and consequently:

tn =[T,,_;(s)+ R(s)- (1, —t,,_)]-x (37)

t]=Y]=T1(s)-x (38)

Considering X = I(or, to put it another way, the necessary quantities of
external resources are always supplied in due time ), the formulas (37) and
(38) become:

th =T, _j()+R($)-(ty, —1,_p) (39)
t] = T](S) (40)

and the execution duration of the first object  indirectly influences the
initial state of the system, thus the (39) formula becoming:

n—1
th =T;(s)+ _):]R(s)(rb -1;) (41)
1=
or, in a simpler way:

-7
th =17+ R(s)':g,j(tb -1;) (42)

3. Conclusions

The formulas (41) and (42) point out the fact that the reduction of the
execution durations represent a direct consequence of the quality of the
management system.
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The estimation of the value of R(s) cannot be achieved considering the
(42) formula only, as it contains another unknown quantity, that is t,, that
can be determined after the execution of enough identical objects
(products); the formula is then:

N-1I
fb =t] +R(S) t;](tb“‘fl) (43)

where N designates the number of objects necessary in order to meet the t, =
tb requirement; developing the formula above, we will obtain:

N-1I N-I
lb =t1+R(S) g fb —'R(S) § Ii (44)
i=] i=1
or:
N-1
tp =t;+(N =Dty -R(s)-R(s) ,'E]ti (45)
Of the last formula, we can extract either R(s):
1, —t;
. = b i -
- .t — I
b fyal
let #:

N-I
t] +R(S) Z fi
i=l

‘b TN=D)-RG)

(47)

In order to exemplify the formula above, let us suppose that, in a
knit- wear goods factory, the head of a department wants to evaluate the
efficiency of a foreman that must make 8 sports outfits during a shift, for
which the execution durations (in events) were determined as corresponding
to the values: 62, 55, 50, 48, 43, 38, 35 and 31; consequently, the value for
the 1, was obtained through the execution of the 8 sports outfits(N = 8), t, = |
and t, = 62,

Applying the 46 formula, we have:

31-62 31

= = =0.21
(8-1)-31-362 145

R(s)
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formula that indicates a foreman with very poor leadership qualities
(generally for an R(s)e[0.5; 0.67] we consider that the leadership qualities
of the foreman are acceptable, for a value of R(s)e[0.67;0.84] they are
considered to be good, the leadership qualities corresponding to an
R(s)e [0.84; 0.93] being considered as very good.)
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